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Open Systems of Splitting Particles 
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Systems with an infinite variety of types of splitting particles are investigated. It 
is shown that if there is a stationary source of particles but no sink, a steady 
state with finite density of each species is nevertheless possible due to the infinite 
number  of degrees of freedom. It is demonstrated that the limiting (steady) state 
is independent of the initial state of the system. Typical features of the steady 
state, which do not depend on the particle splitting law, are shown. 

KEY WORDS:  Open systems with infinite variety of splitting particles; 
branching; renewal theory equation; steady state; particle density; Malthus 
parameter. 

1. I N T R O D U C T I O N  

There are physical systems composed of particles which can be either split 
or multiplied in addition to their collisions and drift in force fields. Typical 
systems like this are rock particles] ~) drops of liquid in turbulent flow, (21 
gas bubbles in liquid, bloodstreams in a continuously variable system of 
branching blood vessels, (3) wave packets in three-wave mixing, etc. 

Kolmogorov (1) found that the posterity of the multiple splitting of a 
rock particle has a logarithmically normal distribution in size (see also 
refs. 4 and 5. 

It should be interesting to know the type of distribution of particles in 
the presence of an external source. A typical system like this is a rock 
crusher where the product is fed continuously. 

An example of such an equilibrium system is possibly gas bubbles in 
the surface layer of the ocean. 
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In a circulatory system blood is fed continuously from the heart 
ventricles to a network of small vessels which rearranges as those vessels 
are opened or closed. 

We will demonstrate that in a system with an infinite variety of split- 
ting particles in the presence of a stationary source, none of the particle 
species is infinitely accumulated with time, but a stationary limiting state 
with the finite density of each species is established even in the absence of 
a sink. If the particle species are numbered by a scalar parameter k (mass, 
size, energy, etc.) and the probability distribution of parameters for 
posterity of any particle depend only on the ratio of the parameters of 
descendents to the parameter of this particle, then for small k the particle 
density is close to G/k s in the steady state, where cr and c~ are determined 
from the source intensity and statistics of the splitting. 

This article is a revision of an earlier preprint. (6) 

2. E V O L U T I O N  E Q U A T I O N S  FOR G E N E R A T I N G  
F U N C T I O N A L  A N D  PARTICLE DENSITY  

Consider a system of splitting particles which have either a scalar 
parameter (e.g., mass) or a vector parameter (e.g., the wave vector of wave 
packet). Assume that the following conditions are met: 

(a) The particles split independently. 

(b) A k-type particle disintegrates into n particles in a unitary split- 
ting event with the probability qn(k); the frequency distribution function of 
division of a k-type particle into n k 1,..., kn type particles is ~n(k/k~ ..... kn). 

(c) The particle lifetimes are statistically independent; the splitting 
rate of a k-type particle is a(k). 

(d) The particles are produced from a source with the particle 
number distribution function {rn}, 0~<n< ~ ,  and the species frequency 
distribution functions {G,(kl ..... kn)}, 0 ~<n ~< 0% with the rate b. 

2.1. The state of a system with a variable number of particles can be 
described by the generating functional ~71 

F(z) = ~ Qn f z(kl)...z(kn)dp~(kl,..., kn) 
n - - O  

where {Qn},~__o and {pn(kl ..... kn)} are the probability distributions; the 
distributions pn(kl ..... kn) are symmetrical with respect to replacement of 
the variables kl,..., kn. 
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An important characteristic of the state is the particle density 

x(k)= ~ nQ.~.(k) 
n = O  

where 

~,(k) = f ~,(k,,..., k~ ~, k~) dk~.., dk,_, 
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~, is the probability density of Pn- The mean number of particles N(D) in 
the region ~ of the space of particle species is given by 

N(~) = f~ x(k) dk 

The particle density can be easily calculated ~7) using the generating 
functional 

aF(z) 
x ( k ) = ~  _-=~ 

where the function 6F(z, k)/6z of the parameter k is defined by the 
following relation for any function h: 

~Sz h = ~  ,=oF(Z+th) 

where (g, h)  =~ g(k)h(k)dk. 

2.2. Consider first a system of splitting particles in the absence of a 
source. We denote the generating functional at the time t, provided that 
initially there is one k-type particle, by F~(t, z). Since the particle splitting 
is a branching Markov random process, the following relation should be 
satisfied for any t, s > 0 (for the finite-dimensional case see ref. 8): 

F~(s + t, z)=Fk(t, FS'~(k)) 

where FS':(k) = Fk(s, z) [-i.e., FS'Z(k) is F~_(s, z) regarded as a function of k 
for fixed s, z]. From this relation it follows that 
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At s---, 0 we have, by conditions (a)-(c), that 

Fk(s, z) = z(k) + sa(k)[fk(z ) -- z(k)] + O(s) 

where 

fk(z) = f q~(k) f z (k l ) . . . z (k , )  N(k/kl  ..... k,)  dk~.., dk, 
n = O  

Denoting for fixed z 

we get the equation 

fZ(k) = fk(z) 

Ot - ' a ( f Z - z )  (1) 

2.3. To obtain the equation for generating a functional system of 
splitting particles with a source of particles, we introduce an imaginary 
nonvanishing particle which produces all other particles according to the 
law given in condition (d). From Eq. (1) it follows that the generating 
functional Fo(z, Zo, t) of this system satisfies the equation 

where 

~?t = a(f~'--z) + b [ g ( z ) z ~ 1 7 6  ~F---2~ 
' ~ Z  0 

g(z)= f rn f . . . f  Z(kl) . . . z (kn)G~(kl , . . . ,k~)dkl . . .dk ~ 
n = O  

and rn, Q, are defined in condition (d). However, Fo(z, Zo, t)=zoF(z, t), 
where F(z, t) is the generating functional of state of a system of splitting 
particles which had no particles at t=0 .  Therefore, F(z, t) satisfies the 
equation 

~t = , a ( f Z - z )  + b ( g ( z ) - l ) f ( z )  (2) 

Calculating the functional derivatives from both sides of Eq. (2) at z = 1, 
we obtain the following equation for particle density: 

~?x( k, t) (. 

- ] W(k, k') x(k', t) dk' + q(k) (3) 
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where 

~n(k'/k) = f ~n(k'/k~ ..... k . _ l ,  k)  dk~ . . ,  dk .  

~l(k) = b ~ G(k) rn(k) 
n = O  

G.(k)=j' . . . f  G~(k~ ..... k .  1 

[see condition (d)]. 

, k )  d k i " ' d k .  1 

Equations for all other moments of state can be derived from (2) in 
the same way. 

3. THE STEADY-STATE DENSITY OF PARTICLES 

3.1. We now consider more mathematically and in more detail the 
splitting of scalar-type particles under the following assumptions: 

~n(k/kl  ,..., k , )  = Rn(k l /k  ..... kn/k) k ~ 

and rn, q, ,  and a are independent of k. In this case 

W(k, k')  = aQ(k /k ' ) / k  

where 

d Q ( r ) =  ~ nq, f ' " f  dRn(vi,..., vn_ t , r )  (4) 

If we suppose that supp dR ,  c [0, 1] n, then Eq. (3) becomes 

~x 
= aBx  -- ax + tl (5) 

Ot 

where the operator B is defined as 

[Bx ] (k) = f~ 1_~ x(k/r ) dQ(z ) (6) 

If the measure dQ has a compact support contained in the interval [0, 1 ], 
then the integral in the left-hand side of Eq. (6) exists for any k, provided 
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that the function x is continuous and x has a compact support. We define 
eQ as a real root of the equation 

#~ = 1 (7) 

where #~=~v~dQ(r ) .  If this root exists, it is called the Malthus 
parameter. Equation (7) has not more than one real root if dQv~ 
6(r - 1) dr. Obviously, #~ < #~ for a > ft. 

T h e o r e m  1. Let the measure dQ in Eq. (6) be finite, the Malthus 
parameter 7o exist, and for some c~ > ao and j =  0,..., [ ~ -  c~Q] the functions 
(3J/Ok j) k~xo(k), (U/Ok j) k~rl belong to Lp([0, ~ ) )  for some p, 1 ~< p ~< o0, 
or to Co([0, ~ ) ) .  Then we have: 

(1) The stationary equation 

aBx~ - ax~ + t /= 0 (8) 

has a unique solution x ~ ,  such that for j =  0,..., [~-c~Q],  the functions 
(OJ/~kJ) k~xo~ belong to Lp([-0, o0)) or Co([0, ~ ) ) ,  respectively. 

(2) The solution x(t, k) of initial value problem (5), x(0) = Xo, obeys 
the inequalities 

oJ 3J Lp - ~  k~x(t) - ~ )  k~xo~ 

1 

ProoL For any xeLp([O, oo)), denote 
x e  C~([O, oe)), then 

~J 
- -  k~Bx = B~Jx~i 
~k j 

x~J(k) = (OJ/Ok j) k~x(k). If 

where 

[B~'Jx~q](k) = r ~' - J -  lx~q(k/'O dQ(r) 

From the Minkowski inequality it follows that 

HB~JX%L={f  ~ f~z~-J-lx~}(k/z)dQ(z)Pdk}l/P<~#~_jllx~}llLp 
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Therefore 

lIB% ~#~_j<~O= 1, j = 0,..., r T -  ~Q] 

and the linear operator ( I - B  ~j) 1 is continuous in Lp([0, ~) ) .  It follows 
that 

1 
X ~  = -  ( I - -  B~J) -1  q ~  

a 

and, therefore, x ~  ~ Lp([-O, oo)) for j = 0 ..... [ ~ -  ~k] and Proposition 1 is 
valid. Since 

x~J(t) = e ta(l--l~J)x~J -~- f r e ~l, s)~1 z~J)q~j ds 

, 1 E ] = - ( I -  B % -  ~J + e - ~ ' ~ t - ~  x ;  ~ + 1 ( I -  B% -~ q~J 
a a 

we have 

]]x~J(t)- ~J ( ( 1 - / ~ ) - I )  x~ll <~ lie ,a(Z-~hl[ ilx~Jll + _ ilr/=Jll 
a 

Taking into account the inequality 

lie "t+ ~J)ll ~ e-ta(1-u~) 

we get Proposition 2. 

3.2. Equation (8) describing the steady state of the system in 
question is close to some equation of the renewal theory. Due to this 
relation we can state more precisely the results concerning the steady-state 
density of particles Xoo(k). 

Theorem 2. Let s u p p d Q c  [0, 1], the measure dQ(e u) be not 
arithmetic, and q(k) be a continuous function having a compact support. 
Then for k-~ oo 

where 

O" 
x~(k)  =- -~ ;~  [1 + O(k)] (lO) 

~ ~l(k) k ~Q dk 
a S~ Iln ~1 z~e dQ(r) 
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P r o o f .  If r/(k)=0 for k~>k,,, km<oo, and 
x ~ ( k ) = 0  for k > k  m and Eq. (8) takes the form 

Denote 

A n t o n e t s  e t  al. 

supp Q ~ [0, 1 ], then 

a x~(k/3)(1/3) dQ(r) - axe(k )  + rl(k ) = 0 
/km 

k = k m  e-t,  3 = e - " ,  k ( t ) = x ~ ( k m e  t) 

f ( t )  = rl(kme t), dG(u) = e ~ dQ (e -u) 

Then k(t) obeys the equation 

a k ( t - u )  d G ( u ) - a k ( t ) + f ( t ) = O  

Under the assumption of the theorem, the following relation is valid: 

k ( t ) ~ n f e  ~Q' 

~g f ( t )  e-l~et dt 
?If- a ~o ~ te -aQt da(t) 

where flQ is the unique solution of the equation 

: e ~Q' dG(t) = 1 

(see ref. 8, Chapter VI). But this equation is equivalent to 

1 

o Be-1 dQ(3)= 1 

Therefore, flQ = c~Q + 1. Finally, 

n : = ~  tl(km e ')e-~Qt d t = k m #  Q ~ qkk~e-l  dk 
a ~ te-~Qte t dQ(e -t)  a I~ Iln(r)l 3 ~Q-1 dQ 

The theorem is proved. 

3.3. In some special case we can find 
parameter ccQ. Suppose that 

supp dR.(31 ..... 3 . ) c  {(31 ..... 3.): 31 + "-- + r . =  1} 

the value of the Malthus 
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i.e., the value k is conserved during the disintegration: for instance, the sum 
of masses of descendent particles is equal to the mass of the parent particle. 
Then 

r dQ(z) = nqn ... r, dR,(rl,..., %) 
aO n = l  

fO fl "r Y1-}-"'" ~-TndRn("(1 ..... T n ) - -  1 = nq,, �9 �9 �9 
n = l  H 

and, consequently, eQ = 1. 

3,4. Let us calculate the throughput of a rock crusher. Let 

x Ik) doj  Cx ikl, k 
(0, k>/~ 

be the steady-state particle density of a subsystem of all particles with 
k-G< 1~. Then x~(k )  obeys the equation 

where 

aBx~ - ax~ + ~l; = 0 

f 
k/f 

tl~(k) = q(k)+ x~(k/z)(1/z) dQ(O 
a .~ k / k m  

for k ~</~ and ~/~(k)= 0 for k >/~. The function 

J(/~) = fo [t/~(k) - r/(k)] dk 

can be taken as a stationary flux of the sink in a subsystem of particles with 
k>/c.  

P r o p o s i t i o n  1. If the measure dQ satisfies the conditions of 
Theorem 2, then at/~ --, 0 

J(fc) = ~a~r + O(k ) l ~-~o (11) 
I_~Q 

ProoL If Ii(k) and I2(/~) are defined as 

k k / ( k k m )  U2 

I i ( k ) = a  fo dk ~ x~(k/z)(1/z)dO(r)  
k / k  m 

[kl~ 
I2(k)=a fo dk xo~(k/r)(1/z)dQ(z) 

") k / ( ~ k m )  1/2 
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then 

J(k)  = I~(f)  +/2(]s 

A n t o n e t s  et  al. 

Since k/r >>. (kkm) 1/2 for all r belongs to the interval [k/km, k/(kk,,,)l/2], we 
have 

xoc(k/r) <~ c [ ( f k , , )  1/2 ] - ~ o - '  

for all k, r in the integral I~(f). We therefore get the estimate 

i i ( k  ) < cl f (1-~e) /2  

On the other hand, 

xoo(k/r) = (k/'c) -=Q-1 [aa + O(k/r)  ] 

and k/r  <~ (fk,~) 1/2 for all r belongs to the interval [k / ( f ,  k, ,)  1/2, k / f ] .  It 
follows that 

xoo(k/r) = (k/v) ~e-1 [aa + O(k)]  

and 

12(f)=il dk I k :  [aa+O(f)](k/r) ~e 1(i/r)dQ(r) 
~ k/(~km)l/2 

f0 ~ (]~km)l/2 = [aa + 0 ( k ) ]  r ~Q dQ(r)  "~ k ~o i dk 

= [aa/c~Q + a(k)]  f -~o  

This relation completes the proof. 

4. S O M E  EXACT SOLUTIONS OF THE STEADY-STATE 
PARTICLE DENSITY EQUATION 

4.1. Let us consider Eq.(8)  for dQ N = ~2j = 1 a :  =' &- Denote fi = 
- e - -  1. Then Eq. (7) takes the form 

N 1 

aj o~j_fl= l (12) 
j=l 

and fie = - c o -  1 is the largest root of this equation. 
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Define also some auxiliary operators Mr, F~ 
[MJ](k)  =f(k/r) 

(13) 
[FBf](k) = vr r = kfl+l f(~) ~fl-2 d~ 

Then B = ~ = t  ajF~, and Eq. (8) takes the form 
N 

a ~, ajF~x~-ax~+rl=O (14) 
j = l  

kemma.  If fl~,...,flN are different roots of Eq.(12), fi~-C~j and 
j, l=  1,..., N, so that the system of linear equations 

=1, j=I,. . . ,N (15) bl 

has some solution bl,..., bN, then the operator inverse to ( I - B )  in Eq. (14) 
has the form N 

( I -B)  1 = 1 +  ~ b,F~t (16) 
l = 1  

Proof. If e r  then 

siJ/ 1 
zlz2M1/,,~2dzl dz2= (FB-F~) 

a -  fl 
For any a t ..... aN, bl ..... [ N it follows that 

(I-j~=l ajF~,)(I+ ,~=1 blFr 

= [+ bt aj 1 F~I 
t = l  j , ~J-~, 

= 1  l 1 

Taking into account Eqs. (12) and (t5), we get (16). 

4.2. We now consider some examples of the exact solutions of 
gq. (14). 

Example  1. Let Q(z)=a l .  Then Eqs. (12) and (15) have the solu- 
tions fit = - a l -  1, bl =a t .  Hence, in view of Eqs. (13) and (16), we have 

x~(k)=!tl(k)+al k-a~ [~ q(~) ~a1--1 d~ 
a Jk 
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and at k- - ,  oe we have 

x ~ ( k ) ~ - k  -(~Q+I) ~(~) r162 

which coincides with Eq. (10), since 

f]- lln.rl .cat t d ~ 1 2 
al 

E x a m p l e  2. Let  Q ( z ) = b , ( 1 - r ) .  Then a t = 0  , 
a2 = - b ,  and Eq. (12) has the form 

b + + 1 = 0  

This implies that  

fll  ~ 1  5--[- (1 ~- 3)1/2 , 

0~ 2 = 1, al  = b, 

f12 : 1 - -  (1--~- b )  1/2 ' O~Q~__(1-~D) 1 / 2 - 5  

[-~o = 1 if b = 12, in accord with (3.3)]. Hence  

1 b__ k C~Q 1 t ~ x ~ ( k )  = - q(k)  + ~l(~) ~Q d~ 
o a Jk 

b ~ ~ ~Q 5 
- - k a ~  f rl(~) d~ 

a k 

Note  that  some exact solutions of Eq. (8) are presented in the recent work  
by Der r ida  and Flyvbjerg. (9) 
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